Как найти информационный объем цифрового звукового стерео файла

Решение задач на кодирование звуковой информации.
методическая разработка по информатике и икт (10 класс) на тему

Подготовка к олимпиадам и ЕГЭ.

Скачать:

Вложение Размер
Решение задач на кодирование звуковой информации. 39.5 КБ

Как сдать ЕГЭ на 80+ баллов?

Репетиторы Учи.Дома помогут подготовиться к ЕГЭ. Приходите на бесплатный пробный урок, на котором репетиторы определят ваш уровень подготовки и составят индивидуальный план обучения.

Бесплатно, онлайн, 40 минут

Предварительный просмотр:

Решение задач на кодирование звуковой информации .

При решении задач учащиеся опираются на следующие понятия:

Временная дискретизация – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.

Глубина звука (глубина кодирования) — количество бит на кодировку звука.

Количество различных уровней громкости рассчитываем по формуле N= 2 I , где I – глубина звука.

Частота дискретизации – количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц).

Качество двоичного кодирования – величина, которая определяется глубиной кодирования и частотой дискретизации.

Разрядность регистра — число бит в регистре аудио адаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I, то при измерении входного сигнала может быть получено 2 I =N различных значений.

  1. Практическая часть. Разбор и решение задачи.

Задача 1 . Оцените информационный объём цифрового звукового стерео файла длительностью 20 секунд при глубине кодирования 16 бит и частоте дискретизации 10000 Гц? Результат представить в Кбайтах, округлить до сотых.

При решении таких задач надо не забывать следующее:

Что моно — 1 канал, стерео — 2 канала

I — разрядность звуковой карты,

t — время звучания аудиофайла,

η — частота дискретизации

V = 2* 16 * 10000*20 = 6400000 бит

6400000/8 = 800000 байт

800000/1024 = 781,25 Кбайт

Ответ:V(Инфор.) = 781,25 Кбайт

Найти: V(информационный объём)-?

Задача 2 . Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит.

η = 22,05 кГц = 22,05 * 1000 Гц = 22050 Гц

I — разрядность звуковой карты,

t — время звучания аудиофайла,

η — частота дискретизации

V(Инфор.) = 22050 *10 *1 = 220500 байт

Ответ: V(Инфор.) = 220500 байт

Найти: V(информационный объём)-?

Задача 3. Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц?

I = 16 бит = 2 байт

V(Инфор.) = 5,25Мб = 5505024 байт

η = 22,05 кГц =22,05 * 1000 Гц =22050 Гц

t = 5505024/( 22050 *2 = 124,8 сек

Ответ: t = 124,8 секунды

По теме: методические разработки, презентации и конспекты

в данном тесте проверяются знания по данной тематике в ходе теоритических вопросов и умения решать задачи по данной теме.

Информатика сдается на многие специальности в форме ЕГЭ. При обучении детей надо учитывать и стандарт, и демоверсии ЕГЭ по информатике. Цель урока — осмыслить процесс преобразования звуковой информаци.

Презентация «Кодирование звуковой информации»9 классАвтор: Горина В. С., учитель информатикиУчебник: Угринович Н. Д. Информатика и ИКТ, учебник для 9 класса, М.: «БИНО.

файл содержит 5 задач на кодирование текстовой информации и их решения.

Подготовка к олимпиаде и ЕГЭ.

План-конспект к уроку информатики (элективный курс).

Отработка навыков решения задач на тему кодирование графической информации в 8 классе.

Источник

Информатика. Базовый курс

Кодирование звука и видео информации

Звук представляет собой волну с меняющейся интенсивностью и частотой (громкостью и его тональностью соответственно). Чем больше амплитуда, тем громче звук. Чем больше частота, тем больше тон.

Хранение и передача аналогового звукового сигнала осуществляется за счёт представления его в виде электрического сигнала с помощью модуляции.

Модуляция – процесс изменения одного или нескольких параметров (амплитуды, частоты или фазы) высокочастотного колебания по закону низкочастотного сигнала (несущей частоты).

Существуют разные виды модуляции:

Амплитудная (АМ, amplitude modulation ) – изменение высокочастотных колебаний с частотой, равной частоте звукового сигнала. Например, несущей частотой может быть питание сети – 50 Гц. Или радиоволна СВ (MW) диапазона от 300 кГц до 3 МГц.

Частотная (FM, frequency modulation) – модуляция при которой информационный сигнал управляет несущей частотой. По сравнению с амплитудной модуляцией здесь амплитуда остаётся постоянной.

Цифровой сигнал

Для того чтобы аналоговый (непрерывный) сигнал представить последовательностью чисел определённой разрядности, его необходимо превратить в дискретный (прерывистый) сигнал, а затем подвергнуть квантованию.

За кодирование звука отвечает звуковая карта, чем выше разрядность звуковой карты, тем больше уровней квантования она выдаёт и тем точнее становится звук при прослушивании.

На современном ПК карта всегда интегрирована в материнской плате, и имеет разрядность не ниже 24 бит.

Оцифровка звука – дискретизация и квантование аналогового сигнала.

1-й этап: Дискретизация сигнала по времени

Допустим, Вы, с помощью микрофона записали свой голос длительностью 5 сек. Этот фрагмент можно разбить на равные малые временный отрезки, которые в сумме дают нам 5 сек. Получаем частоту дискретизации (f, Гц), которая является обратной величиной времени: t сек. При частоте дискретизации 8 кГц=8 000 Гц, из формулы получаем отрезок, равный 0,000125 сек. или 125 миллисекунд.

2-й этап: Квантование сигнала по уровню

Чем больше уровней будет доступно для кодирования временных отрезков, тем ближе к аналогу будет закодированный файл, но при этом объём файла увеличится.

Например, возьмём 8 уровней, чтобы их закодировать в двоичный код нам достаточно 3 бита, что мы получаем из формулы Хартли:

2³=8 – комбинаций двоичного ряда чисел от 000 до 111.

Параметр (i) – называется глубина кодирования. 8 бит – 256 уровней, 16 бит – 65 536 уровней, 24 бита – более 16 млн. уровней.

3 этап: Определяем скорость потока звука

Частота дискретизации – 22 кГц, глубина кодирования – 16 бит. Произведение этих двух величин дает нам скорость потока 352 кбит/сек.

Именно такой канал передачи данных потребуется для воспроизведения звукового файла в режиме он-лайн.

Расчёт количество звуковой информации

Для определения информационного объёма звуковой информации, нам необходимы следующие параметры:

  • f– частота дискретизации (Гц);
  • t – время звучания звукового файла (сек.);
  • i – глубина кодирования (бит);
  • n – количество звуковых каналов (n = 1, моно; n = 2, стерео).

Задача 1:

Одна минута записи цифрового аудиофайла занимает 1,3 МБ, разрядность звуковой платы — 8 бит. С какой частотой дискретизации записан звук?

Воспользуемся формулой: I=f∙t∙i∙n , из формулы видно что для нахождения частоты дискретизации формула примет вид: f=I/t∙i∙n.

1,3 МБ = 13,31,2 КБ = 1 363 148,8 Байт. Принимая во внимание что 8 бит = 1 Байту, делим 1 363 148,8 на 60, канал у нас записан 1, поэтому n=1.

Ответ: 22719,1 Гц или 22 050 Гц, см. основные настройки параметров звукового файла в программе Audacity

Задача 2:

Две минуты записи цифрового аудиофайла занимают на диске 5,1 МБ. Частота дискретизации — 22 050 Гц. Какова разрядность аудиоадаптера?

Решение: 5,1 МБ = 5 347 737,6 Байт, делим по формуле: i = I / f∙ t ∙ n.

5 347 737,6 / 22 050 ∙ 120 = 2,02 Байт.

Ответ: 16 бит.

Кодирование видео

Информация хранится на различных носителях в виде файлов. Файл занимает память и может быть измерен в единицах измерения информации: бит, Байт, КБ и т.д.

Стремительное развитие интернета резко увеличило обмен информацией между людьми, для оптимизации хранения данных люди стали использовать специальные алгоритмы сжатия.

В основе цифрового видео лежит графический и звуковой файлы. Если рассчитать объём видеофайла без сжатия, нам необходимо учитывать тот факт, что человек начинает воспринимать смену кадров (картинок), как непрерывное плавное движение, если за 1 сек. будет мелькать 24 кадра.

Основы ТВ

Для приёма телевизионного сигнала используется антенна и приёмник. Приёмник – это электронная схема, которая преобразует сигнал в изображение на экране. В этом процессе участвует генератор кадровой развёртки и строчной.

Кадровая развёртка формируется на частоте, близкой к частоте переменного тока в бытовых электросетях – 50 Гц.

Кадровая развёртка, в сочетании со строчной служит для преобразования плоского двумерного изображения в одномерную последовательность, то есть, видеосигнал, а в телевизоре или мониторе компьютера для преобразования видеосигнала обратно в изображение на экране.

Для создания такой последовательности, используются специальные стандарты разложения:

576i, 625/50 — стандарт разложения, принятый для аналогового и цифрового телевидения в Европе, России, Австралии, странах Африки и Азии. 576 – это количество активных строк для аналогового телевидения и число пикселей по вертикали, для цифрового. Буква «i», англ. Interlace означает чересстрочную развёртку, передающую 25 целых кадров в 50 полях за 1 секунду.

480i, 525/60 — стандарт разложения, принятый в США, число активных строк составляет 480.

Существует также прогрессивная (p) кадровая развёртка, где все строки каждого кадра отображаются последовательно. Прогрессивная развертка стала широко распространена с появлением персональных компьютеров. Для комфортного чтения мелкого текста с экрана монитора, чересстрочная развертка стала малопригодна, так как мерцание строк вызывало быстрое утомление глаз.

Помимо развёртки существует ещё и соотношение сторон: аналоговое ТВ – 4:3, цифровое ТВ – 16:9, широкоформатное.

Форматы со сжатием

Давайте для начала посчитает объём видеофайла без сжатия, длительность 1 час 30 мин., 576i, 16:9. Звук записан с частотой дискретизации – 44 100 Гц, глубина кодирования 24 бит.

Решение:

Видео: I = 576 ∙ 1024 ∙ 25 ∙ 5400 ∙ 24 = 1 911 029 760 000 бит = 222,5 ГБ

Звук: I = 44 100 ∙ 5400 ∙ 24 = 5 715 360 000 бит = 681,3 МБ = 0,665 ГБ

Ответ: 223,2 ГБ.

Графический формат JPEG

Алгоритм JPEG (от англ. Joint Photographic Experts Group) в большей степени пригоден для реалистичных изображений с плавными переходами яркости и цвета, таковыми являются фотографии.

В основу алгоритма заложен переход от цветового пространства RGB к цветовому пространству YCbCr. Y – компонент яркости, Cb и Crсиний и красный цветоразностные компоненты. Суть сжатия состоит в том что для каждого блока пикселей 2х2 записывается не 12 значений, а 6, за счёт использования усреднённого компонента цвета.

Видео и аудио форматы MPEG

Алгоритм MPEG (англ. Moving Picture Experts Group) – стандарты сжатия и передачи цифровой видео и аудио информации. Базовым объектом кодирования в стандарте MPEG является кадр телевизионного изображения. Поскольку в большинстве фрагментов фон изображения остается достаточно стабильным, а действие происходит только на переднем плане, сжатие начинается с создания исходного кадра.

При сжатии аудио используются хорошо разработанные психоакустические модели, чтобы выбросить звуки, которые не слышны человеческому уху.

Современные цифровые стандарты

Современные дисплеи и мониторы уже давно вышли за рамки старых добрых стандартов.

Источник

Читайте также:  Гаснет колонка при работе астра
Оцените статью