Фильтр для пассивной колонки

Фильтр для нч динамика

Трёхполосные акустические системы, состоящие из трёх динамиков, являются самым удачным решением для высококачественного звуковоспроизведения. В них используются три типа звуковых головок. Они отличаются по размеру, конструктивным особенностям и полосе воспроизводимых частот. Для разделения всего частотного диапазона выдаваемого усилителем низкой частоты используются полосовые фильтры-кроссоверы. В них используются конденсаторы дроссели и, реже, резисторы.

Сделать своими руками фильтр для динамика НЧ очень просто.Основным элементом устройства является индуктивность или дроссель. Катушка включается последовательно с низкочастотным динамиком.

Фильтр для низкочастотного динамика

Фильтр нижних частот из дросселя и конденсатора большой ёмкости называется схемой Баттерворта второго порядка. Он обеспечивает спад частот выше частоты среза до 12 dBна октаву. Схема работает следующим образом. Индуктивность в LC контуре выполняет функцию переменного резистора. Его сопротивление прямо пропорционально частоте ивозрастает с увеличением диапазона. Поэтому высокие частоты практически не попадают на НЧ динамик. Такую же функцию выполняет и конденсатор. Его сопротивление обратно пропорционально частоте и он включается параллельно громкоговорителю.

Поскольку схема устройства должна хорошо пропускать низкие частоты и обрезать высокие, то конденсаторы такого устройства имеют большую ёмкость.Пассивный фильтр для динамика может быть выполнен по более сложной схеме. Если соединить две схемы Баттерворта последовательно, то получится устройство четвёртого порядка из двух индуктивностей и двух конденсаторов. Оно обеспечивает спад частотной характеристики низкочастотного громкоговорителя в 24 децибела на октаву.

Читайте также:  Антенна для автомагнитолы приора

Для того чтобы выровнять частотную характеристику и более точно согласовать схему Баттерворта и динамик, между катушкой индуктивности и конденсатором, включается резистор с небольшим сопротивлением. Для этой цели лучше использовать проволочные резисторы.

Фильтры для динамиков своими руками

Сделать фильтр для динамика совсем не сложно. Он состоит всего из двух элементов – конденсатора и катушки индуктивности. Рассчитать параметры радиоэлементов для пассивной схемы низкой частоты второго порядка проще всего на онлайн калькуляторе. Там можно задать желаемый уровень среза и сопротивление акустической головки. Программа выдаст требуемую ёмкость конденсатора и индуктивность катушки. Например, выбран уровень среза 150 Гц, а сопротивление динамика равно 4 Ом. Калькулятор выдаст следующие значения:

  • Ёмкость конденсатора – 187 мкф
  • Индуктивность катушки – 6,003 мГн

Требуемую ёмкость можно получить из параллельно соединённых конденсаторов К78-34, которые специально разработаны для работы в акустических системах. Кроме того есть обновлённая линейка конденсаторов аналогичного типа. Это KZKWhiteLine. В качестве недорогих аналогов, радиолюбители часто используют конденсаторы типа МБГО или МБГП.

Катушка индуктивности на 6 мГн наматывается на оправке диаметром 1 см и длиной 6 см. Поскольку катушка не имеет магнитного сердечника в качестве бобины можно использовать цилиндр из любого материала, на который для удобства намотки, нужно сделать щёчки. Для намотки используется медный провод типа ПЭЛ диаметром 1 мм. Длина проволоки 84 метра. Намотку нужно делать виток к витку.

Источник

Проектирование и расчёт пассивных разделительных LC фильтров
(кроссоверов) для акустических систем

Онлайн калькулятор акустических фильтров 1. 6-го порядков: нижних частот (ФНЧ) для
низкочастотных динамиков, фильтров верхних частот (ФВЧ) – для высокочастотных,
а также полосовых фильтров (ПФ) – для среднечастотных.
Расчёт согласующей цепи Цобеля и Г- образного аттенюатора для громкоговорителя.

В настоящее время практически все качественные акустические системы являются многополосными, т. е. состоящими из нескольких громкоговорителей, каждый из которых работает в своём, отведённом ему диапазоне частот. Для распределения энергии звукового сигнала между динамиками используют электрические разделительные фильтры (КРОССОВЕРЫ), в данном рассматриваемом случае — пассивные LC-фильтры, которые включаются между выходным разъёмом усилителя, обладающего близким к нулю выходным сопротивлением, и динамической головкой АС.
Надо отметить, что данные разделительные фильтры являются одним из важнейших компонентов акустических систем, определяя весомую часть необходимых электроакустических характеристик, а также качества и естественности звучания тракта.

Сколько полос иметь? На каких частотах делить звуковой частотный диапазон? Какого типа и какого порядка использовать разделительные фильтры в кроссоверах, а также — какими эти фильтры будут обладать характеристиками — вот вопросы, которые устойчиво стоят на повестке дня и требуют аккуратного и подробного обсуждения.

Часть ответов на эти вопросы можно найти в довольно показательной таблице сравнительных характеристик различных фильтров, опубликованной в журнале «Автозвук», № 5/2001.
Таблица примечательна тем, что в ней приведены только реально применяемые кроссоверы без упоминания редко используемых типов фильтров, а также фильтров с нежелательными для акустики свойствами.

Краткая сравнительная характеристика разделительных фильтров акустических систем

Главным достоинством фильтров первого порядка является возможность одновременного достижения идеальной (плоской) АЧХ и идеальной (нулевой) ФЧХ. Недостаток фильтров первого порядка – слабые фильтрующие свойства

Любой фильтр второго, шестого, десятого и т.д. порядка обладает недостатком: при отсутствии переполюсовки динамиков АЧХ имеет провал, при переполюсовке возможны проблемы с импульсным откликом

Хороший фильтр с хорошим звуком. Отличные импульсные характеристики. Как правило, требует переполюсовки одной из головок

Обеспечивает гладкую АЧХ при очень хороших ФЧХ и импульсных характеристиках

Дает выброс 3 дБ на частоте раздела. Один из способов борьбы с выбросом – разнесение частот среза ФНЧ и ФВЧ

Фильтры третьего порядка обеспечивают достаточно высокую степень разделения при все ещё приемлемых ФЧХ и ГВЗ. Наиболее перспективны в большинстве устройств. Переполюсовка одной из головок приводит к иным последствиям, чем у фильтров 2-го порядка: АЧХ не меняется, характер ГВЗ улучшается, звук – дело вкуса

Имеет небольшое отклонение АЧХ от идеала в районе частоты раздела. Обладает улучшенными импульсными характеристиками

Применяется редко

Является основным среди фильтров третьего порядка, так как единственный обеспечивает плоскую АЧХ

Фильтры четвертого порядка применяются только в специальных случаях, когда по каким-то причинам требуется очень жесткое частотное разделение. ФЧХ и импульсные характеристики на грани допустимого. В отличие от фильтров второго порядка – не требуют переполюсовки

Практически не имеет отличий от фильтра Линквица – Райли

Обладает гладкой АЧХ

Используется редко

Используются чрезвычайно редко, например, при необходимости очень резкого ограничения полосы частот, подаваемых на низкочастотный динамик или сабвуфер. Переполюсовка просто вредна

Применяется редко

Применяется редко

Обладает гладкой АЧХ

Порядок
фильтра
Бесселя Линквица – Райли Баттерворта
1
3
4
5

От себя добавлю, что действительно — фильтры 5-го порядка используются редко, однако если требуется существенное подавление внеполосных частот, подаваемых на сабвуфер, то в качестве ФНЧ, как правило, применяются фильтры не 5-го, а 6-го порядков и не Баттерворта, а Линквица – Райли.
Приведём схемы LC фильтров верхних и нижних частот 6-го порядка. Схемы фильтров меньших порядков образуются путём отбрасывания соответствующих элементов (Рис.1).

Рис.1 Схемы односторонне нагруженных LC фильтров верхних и нижних частот

Для фильтров нижних частот — значения величин элементов, соответствующих: порядку фильтра, сопротивлению нагрузки Rн и частоте среза (разделения) Fср, рассчитываются по следующим формулам:
Li= αi*Rн/(2πFср) ; Ci= αi/(2πFср*Rн) , где αi — это справочные нормированные значения (коэффициенты) для каждого элемента ФНЧ, называемые значениями элементов фильтра-прототипа.

Для фильтров верхних частот — каждая индуктивность из схемы ФНЧ заменяется ёмкостью, ёмкость — индуктивностью, которые, исходя из тех же самых коэффициентов, рассчитываются по формулам:
Ci= 1/(2πFсрi*Rн) ; Li= Rн/(2πFсрi) .

Оставим все многочисленные таблицы со значениями нормированных коэффициентов фильтров-прототипов для справочной литературы, а сами сразу перейдём к онлайн расчёту номиналов элементов кроссоверов.

КАЛЬКУЛЯТОР РАСЧЁТА ЭЛЕМЕНТОВ ФНЧ и ФВЧ LC- ФИЛЬТРОВ ДЛЯ АКУСТИЧЕСКИХ СИСТЕМ

Для полосовых фильтров: каждый элемент-индуктивность из НЧ фильтра-прототипа заменяется на последовательный LC контур (Рис.2), элементы которого рассчитываются по следующим формулам:
Li= αi*Rн/[2π(Fв — Fн)] , где Fн и Fв – нижняя и верхняя частоты среза полосового фильтра, а
Ci= 1/(4π 2 *Fн*Fв*Li) .
Каждый элемент-ёмкость из фильтра-прототипа нижних частот заменяется на параллельный LC контур, элементы которого рассчитываются по формулам:
Ci= αi/[2π*Rн*(Fв — Fн)] ;
Li= 1/(4π 2 *Fн*Fв*Ci) .

Рис.2 Схемы односторонне нагруженных LC полосовых фильтров

Разместим калькулятор расчёта элементов и для полосовых фильтров акустических систем.

КАЛЬКУЛЯТОР РАСЧЁТА ЭЛЕМЕНТОВ ПОЛОСОВЫХ LC- ФИЛЬТРОВ ДЛЯ АКУСТИКИ

При расчёте разделительных фильтров принимается допущение, что нагрузка (сопротивление динамика) — это величина чисто активная. Однако, учитывая то, что реальные громкоговорители обладают комплексным характером входного сопротивления, то для корректной работы фильтров могут потребоваться согласующие цепи, компенсирующие этот комплексный характер.
При проектировании кроссоверов — частоты среза фильтров всегда следует выбирать значительно выше резонансных частот громкоговорителей. Тогда для компенсации комплексного характера входного сопротивления громкоговорителя будет достаточно включения упрощённой согласующей цепи, называемой цепью Цобеля и представляющей собой простую цепочку из последовательно включённых сопротивления Rк и ёмкости Cк (Рис.3а).
Рэй Олден, автор одной из самых популярных книг по акустике, советует использовать следующие соотношения: Rк = 1,25*Rе ; Ск = Lе/Rе 2 , где Re и Le — это паспортные сопротивление и индуктивность динамика.

Рис.3 Согласующая цепь Цобеля и Г-образный аттенюатор для громкоговорителя

Также для уменьшения неравномерности суммарной АЧХ многополосной АС зачастую необходимо ослабить уровень каких-либо составляющих, как правило — среднечастотных либо высокочастотных. Это можно сделать с помощью Г-образных пассивных аттенюаторов, обеспечивающих заданный уровень ослабления N (дБ) (Рис.3б). Если задаться целью произвести ослабление без коррекции активного сопротивления громкоговорителя, то формулы для вычисления номиналов резисторов имеют следующий вид:
R1 ≈ Re*(10 0,05N — 1)/10 0,05N ; R2 ≈ Re/(10 0,05N — 1) .

Сдобрим пройденный материал калькуляторами.

КАЛЬКУЛЯТОР РАСЧЁТА ЦЕПИ ЦОБЕЛЯ ДЛЯ ГРОМКОГОВОРИТЕЛЯ

КАЛЬКУЛЯТОР РАСЧЁТА ЭЛЕМЕНТОВ АТТЕНЮАТОРА ДЛЯ ГРОМКОГОВОРИТЕЛЯ

Следует отметить, что некоторые производители акустики игнорируют согласующие цепи, считая, что компенсация комплексной характеристики портит звучание системы на реальном музыкальном материале. В таких случаях неравномерность АЧХ тракта приходится устранять при помощи измерительной аппаратуры, кропотливо подбирая каждый из элементов звеньев фильтра.
В принципе — то же самое можно сделать и на симуляторе, подставив в качестве нагрузки фильтра эквивалентную электрическую схему громкоговорителя. Естественным образом — эта схема должна учитывать акустическое оформление динамика. А как создать такую схему — мы с вами подробно обсудили на странице ссылка на страницу.

Источник

ФИЛЬТР ДЛЯ АКУСТИКИ

Тема сведения акустических систем довольно популярна среди радиолюбителей. Этому способствует не только желание созидать, благо динамиков нынче на любой бюджет, но также и неудовлетворительное качестве серийной акустики. Изготовление фильтров требует как правило большого опыта, отчасти эмпирического, так как строгий математический расчет в лице симуляций никак не отражает звучание, и тем более не может дать ответ как сводить. Примерная прикидка не всегда дает ожидаемые результаты.

Виной тому отсутствие внятной теории именно сведения, а не электрических фильтров, с ними все ясно, чего нельзя сказать про сведение, где все базируется на нюансах которые в литературе как правильно не описаны. Цель данной статьи поведать некоторые особенности проектирования фильтров на реальном примере. В этой статье, к величайшему сожалению, не будет полноценного расчета или инструкции как брать и делать, ибо каждый случай уникален и требует персонального рассмотрения, и в лучшем случае можно указать на что обратить внимание и задать вектор размышлений в целом.

Важные характеристики АС

Для начала разберёмся чем характеризуется акустическая система. Тут три характеристики: амплитудная, фазовая и импедансная.

  • АЧХ считается наиболее важной, так как больше определяет звучание, впрочем не в ней счастье, ровная АЧХ еще не гарантия хорошего звука.
  • ФЧХ сама о себе не слышна, может быть слышен резкий перегиб фазы в точке раздела.
  • ИЧХ вовсе на звучание не влияет, зато влияет на усилитель, но не на каждый, а лишь на тот у которого высокое внутреннее сопротивление, в частности ламповые.

Из-за кривого импеданса многие колонки могут не спеться с лампой, вся неровность импеданса вылезет в АЧХ. В каком-то случае это может пойти на пользу, но надеяться на это не стоит, хотя бы потому, что такая акустика будет крайне чувствительна к усилителю, станут слышны лампы, их режимы, а сравнение с каменным усилителем становится вообще не корректным.

Потому, если задаться цель построить акустику мало чувствительную к усилителю, необходимо обеспечить постоянство импеданса во всем диапазоне частот, а это накладывает определенные ограничения. В частности это обязывает применять фильтра настроеные на равную частоту среза и имеющие равную добротность.

Это правило позволяет для настройки фильтра контролировать только линейность импеданса, что исключает необходимость измерения АЧХ фильтров и в случаи отсутствия хорошего микрофона в измерении ачх динамиков, то есть можно обойтись минимальным набором приборов: генератором (возможно программным) и вольтметром.

Практическая работа

Плавно переходим от теории к практике. Достались мне винтажные колонки под названием Kompaktbox B 9251. И первое что было сделано — произведено прослушивание.

С холодным камнем звук был в среднем не плох, а если говорить конкретно, то местами хороший, а местами как попало. С теплой лампой играть вообще отказались. На основе этих наблюдений был сделан вывод о наличии глубоко зарытого потенциала. Вскрытие показало, что немецкие инженеры решили обойтись одним единственным конденсатором последовательно с ВЧ головкой. Измерение АЧХ дало страшную картину. На рисунке АЧХ одной колонки, кривая с глубокой дыркой на 6 кгц из-за плохого контакта разъема, на нее внимание не обращать. АЧХ отдельно ВЧ и НЧ приведены ниже.

Частота раздела

Тут самое время задуматься о частоте раздела. Обычно частота раздела выбирается на ровных горизонтальных участках, вдали от резонансов и завалов, стараясь обойти внезапные неравномерности как потенциальные источники искажений. А если вспомнить что существует фаза, о которой мало известно, а если известно, то векторно ачх на бумажке не сложишь, а из-за кривизны фаз даже на идеально ровной ачх что-то вылезет, что-то провалится в большей или меньшей степени. Также надо помнить что может дать сам динамик, особенно ВЧ, скажем не надо заставлять дюймовый купольник играть от двух, а тем более одного килогерца, даже если он способен их отыграть по АЧХ.

Не забывайте, что большой ход порождает интермодуляционные искажения, поэтому каждому размеру динамика соответствует свой диапазон частот. В свете вышесказанного понятие частоты раздела размазывается на область, куда стоить сводить, а конечную точку подбирать иначе, например на слух. Или вовсе не подбирать, но про это чуть позже.

Итак, смотрим какие уникальные динамики нам достались. Высокочастотник начинает валить с 1,3 кгц, значит ниже его пускать нельзя. С другой стороны низкочастотник пытается играть по самые 10 кгц, с переменным успехом. Однако здравый смысл подсказывает, что выше килогерца его пускать плохая затея. И что спрашивается делать, если рабочие диапазоны динамиков не пересекаются?

Тут есть два варианта: если спады имеют адекватную крутизну, то лучше всего сводить в ямку, особенно если ямка получается широкой. В случае же нашем, когда спады круты как обрывы, надо держатся подальше от самого крутого из них. Чаще всего это может случится с высокочастотником, им всегда тяжко работать у нижней границы диапазона, поэтому им целесообразнее облегчить жизнь возлагая воспроизведение нижней части диапазона на НЧ динамик, который отыграет хоть плохо, но не нагадит. Поэтому ограничиваем диапазон участком от 1,5 кгц до 2,2 кгц.

Порядок фильтра и его добротность

Следующий параметр, с которым надо определиться — это порядок фильтра и его добротность. В данной статье будут рассматриваться два порядка, первый и второй.

  • С первым все просто: есть катушка, есть конденсатор, считаем их параметры под требуемую частоту среза и при надобности корректируем значения до получения желаемой АЧХ, ФЧХ, ИЧХ.
  • Со вторым порядком по-хитрее, там уже две катушки и два конденсатора. От значений номиналов зависит такой параметр как добротность, он определяет крутизну спада АЧХ и в некоторой степени сдвиг фазы. Поскольку влияние фазового сдвига и крутизны умозрительно не прикинешь, остается просто выбрать в какую сторону думать. А думать тут в сторону низкой добротности, читай больше индуктивности в катушках, меньше емкости в конденсаторах.

Как выбрать порядок. Тут руководствуются уже знакомыми соображениями о том, на что способны излучатели, в особенности высокочастотник. Если большой ход ему противопоказан (как в нашем случае) то предпочтение отдаем второму порядку.

Для полноты картины следует упомянуть, что порядок также определяет степень совместной работы динамиков, но это уже информация для самостоятельного размышления.

Импедансная характеристика динамиков

Когда с примерными параметрами все более или менее ясно, самое время переходить к практике. Снимаем импедансную характеристику динамиков. С целью оценки сопротивления на графике имеется лесенка с шагом в один Ом. Скачек на 110 герцах это переключение с 10 Ом на 20.

Разумеется с такими горбами ни один фильтр нормально, и уж тем более расчетно работать не будет, особенно фильтр НЧ. Фильтру ВЧ этот подъем работать в общем то не мешает, однако как упоминалось ранее такой подъем на конце диапазона приведет к подъему высоких частот, в случае если усилитель имеет высокое сопротивление. Это можно использовать и во благо, оставив подъем небольшим.

Для выравнивания этих подъемов применяют так называемую цепочку Цобеля. Она состоит из последовательно включенных резистора и конденсатора. Проще всего ее подобрать методом научного тыка: берется реостат, горсть конденсаторов, и все это двигается пока не получится ровная линия.

Для примерного представления что от чего зависит привожу набор графиков для различных емкостей и сопротивлений. Ступенька начинается с 10 Ом.

Зная минимальное сопротивление НЧ звена, нужно привести к такому же и ВЧ звено. Тут много вариантов как соединить два резистора и цепочку Цобеля, и каждый кто решился на такой отважный шаг как сведение сам способен определить вид подключения и номиналы резисторов, поэтому описывать данную процедуру здесь излишне. Конкретно в данных колонках по результатам предварительного прослушивания решено было оставить родные резисторы на 2,2 ома и цепочку Цобеля параллельно ВЧ динамику.

Сведение фильтров

Теперь начинается финальный этап — сведение фильтров. Пора намотать катушки. или не намотать? Мотать всегда лень, нет провода, каркасов, конкретных значений индуктивности. В виду этих причин поискав в хламе нашлись пары катушек на 0,8 мкг и 3 мкг — на них и пришлось строить. В крайнем случаи всегда же можно домотать или отмотать лишнее.

По графику видно, что раздел попал в район 1,8 кгц, что вполне вписывается в задуманные границы. Подбором конденсаторов удалось добиться следующего импеданса. На частоте раздела имеется два бугорка, но их высота меньше полу ома — это не критично. Это не конечный его вид, в последствии был несколько увеличен резистор в цепочке Цобеля пищалки.

На приведенных выше картинках АЧХ как самого фильтра, так и АЧХ динамиков с его включением.

Фазировка динамиков

На этом сведение подходит в концу. Остается только определиться с фазировкой динамиков. Тут есть как минимум три способа: на слух, по форме АЧХ и по фазовому сдвигу на частоте раздела. Если у динамиков АЧХ и ФЧХ в меру линейная, и фильтр фазу на разделе сильно не накручивает, то при смене правильной фазы на неправильную на частоте раздела появится глубокий провал, пропустить его сложно. В таком случае стоит подгонять фазу по по ее сдвигу. Сделать это можно осциллографом подавая на горизонтальную развертку сигнал с усилителя, а на вертикальное отклонение с микрофона.

Подают на вход усилителя синус с частотой раздела и не меняя взаимного расположения микрофона и колонки переключают ВЧ и НЧ динамики. По одинаковости фигур Лиссажу делается вывод о равенстве фаз излучателей. Этот метод хорошо подходит для фильтров первого порядка. С кривизной наших динамиков этот метод себя не оправдывает, поэтому сравниваем АЧХ при разной фазировке.

Второй вариант заметно хуже. Однако и первый не предел мечтаний, но так как двигать индуктивности катушек не просто, а ковыряться дальше уже лень, то все было оставлено как есть.

Сборка фильтров

В завершение пару слов про сборку. В фильтре применяются сравнительно большие емкости, 20 мкф, 27 мкф, а места в корпусе и так не много, бумаги или пленки не набрать. Приходится ставить электролиты. И если в фильтре НЧ звучание от их применения пострадает не сильно, а в цобеле их можно и вовсе не услышать, то в фильтре ВЧ звучанием конденсаторов пренебрегать опасно. Именно по этой причини были применены бумажный МБГЧ и пленочный К73-16, а все электролиты зашунтированы бумажными МБГО на 4 мкФ.

Не стоит увлекаться параллеленьем сильно разных конденсаторов. Основной критерий здесь тангенс угла потерь. Если к примеру поставить в шунт к бумажному конденсатору аудиофильский полипропилен, то скорее всего вылезут верха и будут они кислотные. Вероятно тут можно составить аналогию с внутренним сопротивлением, сравнив с ним тангенс угла потерь: чем он меньше, тем больше через конденсатор пройдет сигнала, а поскольку емкость у такого высококачественного конденсатора меньше, то через него пройдет только высокочастотная часть сигнала, отсюда и имеем повышенные уровень верхов. Но это только аналогия, для лучшего понимания влияния шунтов на звук.

Про то как надо разносить катушки и какой толщины применять провода статей написано предостаточно, повторяться здесь не буду. Проще показать картинку (тут неправильно припаян цобель высокочастотника, он должен стоять после резистора).

Звучание системы

И конечно же надо сказать про звук. Стало лучше, сцена получилась очень недурственная. Кривизна АЧХ особо не слышна, даже наоборот, подъем на середине поддает детальности, верхов как ни странно хватает. Был замечен интересный эффект на басу. Как можно заметить по АЧХ на сотне герц большой подъем, а за ним завал, разумеется качающего баса нет, но есть мид бас. К примеру партия гитары кажется немного просаженным, а нижний бас, партия бас гитары, переходит как бы в слышимую область и читается очень четко, создается впечатление наличия того самого низкого баса.

Конечно ящики маловаты, и порой слышно подбубнивание, для устранения этого эффекта в каждую колонку было добавлено по 30 грамм натуральней шерсти. В целом данная акустика играет тепло и мягко даже без лампового усилителя, сохраняя в звуке строгость и точность камня, а вот с теплой лампой получается перебор мягкости. Все же им нужен усилитель по-строже — триод или двухтакт, но это тема для следующих экспериментов. Специально для сайта Радиосхемы — SecreTUseR.

Форум по обсуждению материала ФИЛЬТР ДЛЯ АКУСТИКИ

Принципиальная схема гальванической развязки для 8-канального логического анализатора. Скорость передачи данных до 10 Мбит.

Современная беспроводная связь — эволюция приёмо-передающей аппаратуры и внедрение цифровой обработки данных.

Самодельная полка-кассетница для хранения мелких деталей и других электрических компонентов.

Тонкомпенсированный регулятор громкости с адаптацией к регулятору тембра — теория и практика.

Источник

Оцените статью