Фазовые наушники что это

Что такое импеданс и как электрическая фаза влияет на звук наушников

Читая мои обзоры, несложно заметить, что я уже много лет с интересом слежу за продукцией киевской лаборатории Ambient Acoustics — кастомными внутриканальными мониторами (так называют наушники, сделанные из акрила по слепку ушей конкретных пользователей, подробнее можете прочитать тут). Наращивая сложность и качество своих изделий, сотрудники лаборатории не забывают и про исследовательскую работу. Недавно они представили совершенно новую технологию коррекции фазы и импеданса в своих наушниках, предлагаю разобраться, что это и зачем оно надо.


Я расспросил представителей лаборатории о том, как работает их технология, и на основе их рассказов постарался написать объяснение.

Для начала нам необходимо четко понять, как работают наушники. Я когда-то писал достаточно большую статью на эту тему, поэтому изложу кратко. В основе практически всех излучателей, использующихся в наушниках, лежит принцип преобразования электрической энергии в механическую с помощью постоянных и переменных магнитов. То есть через проводник, помещенный в постоянное магнитное поле, проходит электрический сигнал, что вызывает появление вокруг него переменного магнитного поля. Два этих поля взаимодействуют, и проводник приводится в механическое движение. Это движение тем или иным способом преобразовывается в колебания воздуха, которые мы и воспринимаем как звук.

Чтобы увеличить силу магнитного поля, проводник чаще всего сматывается в катушку. Там же, где имеется катушка индуктивности, в дело вступает интересная физическая величина под названием реактивное сопротивление. В отличие от обычного сопротивления резистора, характеризующегося соотношением напряжения к току, сопротивление реактивных элементов (катушек индуктивности и конденсаторов) не может быть измерено так просто. Обычное сопротивление идеальной катушки стремится к нулю, конденсатора — к бесконечности.

Читайте также:  Планарная акустика что это

Для таких элементов знаменитым математиком Хевисайдом в 1886 году было введено понятие комплексного (или полного) сопротивления, называемого также импедансом. Импеданс, в отличие от сопротивления, изменяется в зависимости от частоты сигнала, проходящего через электрическую цепь. Чаще всего в характеристиках наушников указывают импеданс, для сигнала в 1 кГц.

Вывод первый: наушники обладают нелинейным импедансом, зависящим от частоты.

В то время как импеданс изменяется с частотой, то же самое происходит и с фазой. В данном случае «фаза» — это временной сдвиг между пиковыми значениями подводимого электрического напряжения и тока. Чем больше фазовый сдвиг, тем больше реактивная составляющая нагрузки. Как правило, чем больше фазовая задержка, тем труднее управлять нагрузкой. Обычный резистор имеет практически нулевую фазовую задержку во всем диапазоне звуковых частот. То есть напряжение и ток, проходящие через резистор, находятся в фазе, без временного сдвига между собой.

Динамические наушники, как правило, обладают практически линейными кривыми импеданса и фазы. Вот, например, графики для наушников Monster Turbine Pro Gold.

Арматурные излучатели сами по себе обладают достаточно «реактивной» кривой импеданса и неравномерной фазой за счет большой индуктивности катушки и постоянных магнитов во внутренней структуре. В качестве электрического кроссовера применяются пассивные электрические фильтры 1-го и 2-го порядка на основе конденсаторов, индуктивностей и резисторов. Из-за этого, кривые импеданса и фазы таких наушников могут быть какими угодно.

Как правило, чем равномерней кривые импеданса и электрической фазы наушников, тем меньше влияние выходного импеданса источников на итоговую частотную характеристику наушников. Таким образом, благодаря линейности электрических характеристик вставных динамических наушников, они являются наименее требовательными к источникам. И наоборот, чем больше неровности кривой импеданса наушников, тем больше выходной импеданс источника влияет на их звук. На приведенных выше графиках заметны достаточно большие всплески импедансов разных наушников, достигающие порой 80-100Ω. Как легко можно увидеть на графиках, на этих же участках АЧХ возникают задержки между изменением напряжения и тока (фаза). Именно на этих участках при наложении фазовых смещений, неравномерности импеданса наушников и выходного импеданса усилителя, обусловленного его схемотехникой, проявляются изменения в итоговых амплитудно-частотных характеристиках (АЧХ) наушников. Проще говоря, будет слышна разница между тем, как наушники должны звучать, и как они звучат на данном источнике. Отсюда возникает проблема «несыгранности» некоторых многодрайверных моделей с некоторыми усилительными трактами. Есть такое эмпирическое «правило одной восьмой»: выходной импеданс источника должен составлять не больше 1/8 импеданса наушников. То есть, для современных чувствительных наушников с импедансом в 16Ω, выходной импеданс плеера должен быть менее 2Ω, а лучше — еще меньше.

Разумеется, сейчас есть очень много хороших плееров с выходным импедансом, стремящимся к нулю и позволяющих максимально нивелировать такие проблемы, но тут есть ряд трудностей. Во-первых, близкий к нулевому импеданс позволяет снизить влияние неравномерности, но не убирает его полностью. Во-вторых, в некоторых случаях использовать такие источники не представляется возможным. Например, Ambient Acoustics очень часто делают свои мониторы для музыкантов, использующих их с профессиональным оборудованием, в котором далеко не всегда ставят за цель достижение низкого выходного импеданса.

Вернемся от теории к практике, а точнее, к Ambient Monitors. Несколько лет Ambient Acoustics постепенно двигались вперед, улучшая свои продукты, и пытаясь достичь поставленных целей. Улучшения носили как внешний (качество литья, применение разных материалов и вставок, изготовление собственных коннекторов), так и внутренний (использование печатных плат для кроссоверов, максимальное использование акустического, а не электрического демпфирования) характер.

Следующим шагом стало стремление добиться максимальной отдачи мониторов, независимо от используемого источника. Единственным способом добиться этого было обеспечить как можно большую линейность тех самых графиков импеданса и фазы.

Основной задачей было сглаживание резонансных пиков электрического контура системы драйверов и электрических кроссоверов в каждой модели, и тем самым понизить влияние внутренней схемотехники источников на итоговое звучание мониторов, повысив «натуральность» звучания. Итогом годовой работы и «обкатки» стало внедрение технологии коррекции фазы и кривой импеданса во все кастомные мониторы.

Разумеется, детали реализации технологии не раскрываются. Основной же ее особенностью является то, что она практически не влияет на итоговую АЧХ мониторов, а «работает» исключительно в области электрических параметров. Максимальной «ровности» в пределах 10 единиц (см. рисунок ниже) из всей линейки мониторов удалось достичь в студийных AM3 Reference Edition. Для остальных моделей этот показатель лежит в пределах 20-40 единиц (что также очень неплохо).

Источник

Какая разница в звучании между арматурным и динамическим басом?

Недавно натолкнулся на разбор полетов о том, какой бас правильный — арматурный или динамический. Владение разными наушниками и проведенными техническими тестами порядка 250 внутриканальных наушников (динамических, арматурных и гибридных) позволило сформировать свое мнение. Однако кому сегодня нужно чье-то мнение, независимо от авторитетности?

Для пояснения разницы звучания баса, выбрал основные объективные причины различий и сделал соответствующую обработку пары музыкальных треков. Послушав демонстрационные треки, можно будет для себя решить, справедливы ли различные предположения и лучше понять, в чем эта разница зарыта. И есть ли она вообще?

Прежде всего хочу обозначить свою позицию. Сама тема сравнения появилась не в пику и не поддержку кому-то, а просто так сошлись звезды.

На одном из форумов пошло обсуждение, что один авторитет считает так-то, а другой авторитет совсем иначе, и кто же кого «переавторитетил» в своих обзорах и видеобращениях?

В этот момент подумал, вроде есть ряд логичных объяснений, но как их донести так, чтобы это не было как “за моими плечами почти 250 протестированных наушников (сходить по ссылке и убедиться), у самого в коллекции разнообразных наушников будет пара десятков, стоимостью от $1 до $1000, и вообще давно все это дело давно слушаю, знаю много, безоговорочно верьте мне”. Уже поверили и ждете короткого ответа?

Если да, то дальше можно не читать. Материал для только тех, кто будет делать выводы сам. И даже в большей степени для тех, у кого уже есть определенное мнение, на основе собственного использования разных наушников.

Причин различного звучания между арматурными и динамическими наушниками много. Разберем основные. Что не разберем, можно будет обсудить в комментариях и прикинуть, можно ли это перевести в дополнительные демонстрационные треки.

Все демонстрационные треки с возможностью воспроизведения из браузера доступны на отдельной странице. На мой взгляд, проще все скачать и воспроизводить из отдельного плеера, т.к. запуск следующего трека не останавливает предыдущий. В разных браузерах интерфейс и возможности тега audio индивидуальные.

Как обычно заявляется основное различие между “арматурой” и “динамикой”?

Практически все формулировки выглядят как “у арматуры быстрый и точный бас, а у динамики он медленный и вялый”.

Что ж, вперед слушать… и проголосовать, как сложится впечатление после прослушивания.

В качестве исходников для демонстрационных треков взял пару своих черновиков многолетней давности, которые вполне подходят для оценки баса, на количество и разборчивость. Какие-то определенные аудиофильские треки не использовал, чтобы не было заморочек с авторскими правами.

Оригиналы без обработки

АЧХ наушников

В большинстве случаев арматурные наушники обладают ровной АЧХ от самых низких частот до начала высоких. Динамические наушники наоборот, имеют подъем в области низких частот с провалом в области нижних высоких.

Для того, чтобы это можно было послушать в любых наушниках, демонстрационные треки обработаны в виде контраста — для того, чтобы почувствовать, как меняется звучание в ту или иную сторону.

В сторону “арматуры”:

В сторону “динамика”:

Какая обработка дала скорости и точности, а какая запоздалости и вялости?

Долгое затухание от динамика

Есть мнение, что арматурный излучатель не дает долгих послезвучий, а динамический не может сразу замолчать и дает долгие затухания.

Эта теория на мой взгляд базируется на прямой аналогии с большими АС фазонверторного типа, где басс-порт добавляет баса, но с небольшой задержкой. А так как фазонвертор работает в виде резонатора в низкочастотной области, то долгое затухание не только ощущается задержкой, но и снижает разборчивость баса в целом. В «правильных» системах обычно используют оформление “закрытый ящик” для получения “быстрого баса”.

В этой логической цепочке я не очень вижу, где в наушниках есть фазоинвертор, который давал бы такой резонанс. Наверно, наиболее близкая по сути конструкция есть только в Shure SE 846 и JVC HA-FXZ200, которые скорее дают просто задержку в выделенном длинном звуководе, а не затухание.


Но, может у нас есть еще переотражения корпуса и прочих вероятно не очевидных вещей, которые могут дать такой эффект.

Если сравнивать напрямую арматурный излучатель и динамик, то арматура — это по своей сути, динамик, который уже поместили в корпус с небольшим звуководом на выходе.

Для этого на диапазон до 120 Гц было наложено эхо малого объема. Величина затуханий довольно большая для возможности это услышать как в в наушниках за 1$, так и через простой смартфон.

Прямая задержка баса

При использовании разделительных фильтров происходит сдвиг фаз и низкочастотная секция начинает играть с небольшой задержкой без дополнительного эха. Для компенсации этого в некоторых АС делают наклон фронтальной панели так, чтобы высокочастотник был дальше от слушателя на определенное расстояние. Там, где габариты АС большие, делают сдвиги отдельно среднечастотной и высокочастотной секций вглубь. Такие АС называют фазолинейными.

Считаются крутыми, но не все эту крутость слышат, считая, что наше ухо такие вещи не фиксирует. В большинстве студийных мониторов такой компенсации нет.

Такое можно встретить и во внутриканальных наушниках, недавно на тестах были Astell&Kern Billie Jean

В этих наушниках используются звуководы разной длины.

Здесь просто по времени были разнесены частотные диапазоны с разделением на 120 Гц. Задержка довольно большая, 10 мс.

Технически такая задержка наиболее вероятна в многодрайверных наушниках с использованием фильтров высоких порядков. Но, обычно в наушниках используется только первый порядок из-за невозможности использовать крупногабаритные катушки индуктивности.

Попробуйте почувствовать разницу между сдвигом по времени и затуханиями из прошлого примера.

Перегруз звуковода

В чем проблема многих малогабаритных фазоинверторных АС? Малый корпус не позволяет делать длинный фазоинвертор. А чем короче труба, тем у нее должен быть меньше диаметр для сохранения выбранной частоты на резонанс.

Это приводит к тому, что при повышении громкости воздух не может “прокачаться” через трубу и происходит аналог мягкого клиппирования. Это сопровождается или призвуками, или обогащением дополнительных гармоник. Т.е. если основной диапазон баса был в области 40-80 Гц, то при перегруженном фазоинверторе мы получим дополнительные гармоники в диапазоне 80-320 Гц.

Кстати, некоторые пользователи порой уверенно слышат “самые низкие частоты” во время разнообразных тестов “на качество звука” в малогабаритных АС именно по паразитным дополнительным гармоникам в среднечастотном диапазоне, принимая это за способность АС играть от 15 Гц.

Такое подробное объяснение с аналогией фазоинвертора сделано не спроста. Дело в том, что именно у подавляющего большинства арматурных динамиков вывод звука организован через узкое горлышко! И именно они потенциально готовы дать призвуки, которые не дадут динамические излучатели.

Мне встречались наушники без узкого горлышка только у Sony. Не уверен, что это было продиктовано логикой в сторону повышения качества звука. Вероятнее это от того, что излучатели делает она сама (или полностью под себя) в уже заготовленный корпус наушников, где нет необходимости крепить трубочки звуководы.

Формально, этот тест покажет и как будут звучать наушники, у которых излучатель уходит в перегрузку.

Здесь низкочастотный диапазон был поджат компрессором.

Источник

Оцените статью