- Digitrode
- цифровая электроника вычислительная техника встраиваемые системы
- Качественный усилитель звука на LM386 своими руками (схемы)
- Схема акустического усилителя звука LM386
- LM386 схема усилителя — сведения о рабочих характеристик
- LM386 — технические характеристики микросхемы
- Внутренняя схема
- Как контролировать усиление для микросхемы LM386
- Практическое применение схем усилителей с использованием микросхемы LM386
- Подробная электрическая схема LM 386 с инструкциями
- Схемы приложений
- Схема усилителя микрофона собранного на микросхеме LM386
- Усилитель LM 386 с усилением низких частот
- Схема радио AM
- Простой усилитель для стереонаушников на LM386. Схема
- Описание схемы
- LM386, KA386, КР1438УН2 – «чемпион» среди аудиоусилителей
- Содержание / Contents
- ↑ Характеристики, функциональная схема и выбор внешних элементов усилителей на ИС LM386
- ↑ Усилительные схемы на ИС LM386
- ↑ Усилитель с коэффициентом усиления 200
- ↑ Усилитель с минимальным количеством внешних элементов и коэффициентом усиления 20
- ↑ Усилитель с коэффициентом усиления 50
- ↑ Усилитель с подъёмом низких частот
- ↑ Принципиальная схема усилителя для АМ радиоприёмника
- ↑ Другие варианты применения микросхемы LM386
- ↑ Усилитель на LM386 с гнездом для подключения наушников
- ↑ Переговорное устройство на LM386
- ↑ Генератор синусоидальных сигналов с малыми искажениями на LM386
- ↑ Генератор прямоугольных импульсов на LM386
- ↑ Универсальный усилитель на ИС LM386
- ↑ Детали универсального усилителя и монтажная плата
- ↑ Файлы
- ↑ Список источников
- Камрад, рассмотри датагорские рекомендации
- 🌼 Полезные и проверенные железяки, можно брать
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Качественный усилитель звука на LM386 своими руками (схемы)
Операционник LM386 является отличным базисом для построения усилителей звука. Тем не менее, существует огромное количество схем с участием LM386, но не все они позволяют создать действительно качественный звуковой усилитель.
В этом материале будет продемонстрировано, как создать отличный звуковой усилитель на основе LM386. При этом в таком устройстве можно реализовать возможность усиления басов.
Прежде чем приводить готовые схемы усилителей звука, стоит сначала взглянуть на сам компонент LM386. Он является достаточно универсальным операционным усилителем. Для создания рабочего усилителя требуется только пара сопротивлений и конденсаторов. Микросхема имеет опции для регулировки усиления и повышения баса, а также может быть преобразована в генератор, способный генерировать синусоидальные волны или прямоугольные волны. Существует три разновидности LM386, каждая с разными номинальными значениями мощности: LM386N-1 (0,325 Вт), LM386N-3 (0,700 Вт), LM386N-4 (1,00 Вт). Фактическая выходная мощность, которую вы получите, будет зависеть от вашего напряжения питания и импеданса громкоговорителя. В документации на LM386 есть графики, которые подробнее расскажут вам об этом. В данном случае прикладывалось напряжение питания 9 В, но вы можете питать этот усилитель напряжением от 4 В и до 12 В. Распиновка LM386 показана на схеме ниже.
ОУ LM386 берет входной аудиосигнал и повышает его напряжение в лимитах от 20 до 200 раз. Это число еще именуется как коэффициент усиления по напряжению. Изменение усиления может быть реализовано подсоединением 10 мкФ конденсатора между выводами 1 и 8. При отсутствии конденсатора между выводами 1 и 8 коэффициент усиления будет установлен на 20. При задействовании конденсатора 10 мкФ коэффициент усиления будет установлен на 200. Коэффициент усиления можно изменить на любое значение между 20 и 200 за счет включения сопротивления (или потенциометра) последовательно с конденсатором.
Теперь, когда мы узнали кое-что о LM386, давайте начнем с создания «голого» усилителя на основе LM386 с минимальным числом элементов, требуемых для его работы. Таким образом, потом вы можете сравнить его с усилителем с более качественным звучанием, который мы соберем позже. Принципиальная и макетная схемы подключения показаны ниже.
На приведенной выше схеме подключения заземление аудиовхода соединено с заземленим аудиовыхода. Выходное заземление «шумит» и вызывает искажение входного сигнала при подключении таким образом. Звуковое входное заземление чувствительно к любым помехам, и любой шум, получаемый усилителем, увеличивается через усилитель. Ставьте целью как можно дальше размещать входную землю отдельно от других путей заземления. Например, вы можете подключить заземление для источника питания, входа и выхода непосредственно к контакту заземления (контакт 4) LM386 следующим образом:
Подключение этого типа должно звучать лучше, чем первая схема, но вы, вероятно, все равно заметите какой-то шум. Мы исправим это в следующей схеме, добавив развязывающие конденсаторы и пару RC-фильтров.
Несколько элементов в этой схеме заставляют ее звучать лучше. Конденсатор емкостью 470 пФ между положительным входным сигналом и землей нужен для фильтрации различных помех, полученных с аудиовходамов. Конденсаторы 100 мкФ и 0.1 мкФ между положительными и отрицательными линиями питания нужны для развязки питания. Конденсатор 100 мкФ отфильтровывает низкочастотный шум, а конденсатор 0.1 мкФ будет фильтровать высокочастотный шум. Емкость 0.1 мкФ между выводами 4 и 6 требуется для дополнительной развязки источника питания от операционника. Резистор 10 КОм и конденсатор 10 мкФ, идущие последовательно, между линией 7 и заземлением нужны для развязки входного аудиосигнала. Вот так это выглядит на макете.
Завершающим этапом построения качественного усилителя звука на LM386 является добавление возможности усиления басов. Усиление басов – это в основном простой фильтр нижних частот, и он удаляет большую часть шума, не убираемого развязывающими конденсаторами. Все, что вам нужно для схемы усиления баса – это конденсатор 0.033 мкФ и потенциометр 10 КОм последовательно между линиями 1 и 5.
Схему можно по-быстрому протестировать, подключив какое-нибудь устройство вывода звука. Простой способ подключения аудиовхода в такой схеме — это отрезать 3.5-мм аудиоразъем от старого набора наушников и подключить его к выводам на макетной плате. Таким образом, на основе LM386 можно самостоятельно, быстро и недорого собрать качественный усилитель звука с возможностью усиления басов. LM3886 — безусловно, один из лучших звуковых усилителей, но есть усилители и с более лучшими характеристиками. После экспериментов с LM386 можно начать создание проектов TDA2003, а затем плавно перейти на TDA2050.
Источник
Схема акустического усилителя звука LM386
Интегральная микросхема LM386 — это крошечный 8-контактный чип усилителя мощности, специально созданный для работы при относительно низких параметрах напряжения, но обеспечивающий значительное усиление.
LM386 схема усилителя — сведения о рабочих характеристик
Схема усилителя IC LM386 идеально подходит для применения в небольших аудио устройствах с низким энергопотреблением, таких как FM-радио, дверные звонки, телефоны и т.д.
Давайте начнем разговор об усилителя IC LM 386 с изучения его абсолютных максимальных номиналов, то есть параметров, которые не должны быть превышены при использовании этой IC в любой схеме:
LM386 — технические характеристики микросхемы
- Напряжение питания: от 4 В до макс. 15 В (типичное)
- Входное напряжение: +/- 0,4 вольт
- Температура хранения: от -65 градусов до + 150 градусов по Цельсию
- Рабочая температура: от 0 до 70 градусов Цельсия
- Выходная мощность: 1,25 Вт при нагрузке 8 Ом
- Изготовитель ИС: National Semiconductor
Внутренняя схема
Как контролировать усиление для микросхемы LM386
Чтобы улучшить отклик ИС, на ее выводах №1 и 8 имеется возможность регулировки усиления, которая может быть установлена снаружи. Когда вышеупомянутые выводы остаются не подключенными ни к чему, то внутренний резистор R6 1,35 кОм автоматически устанавливает усиление микросхемы на 20.
Если конденсатор подключается к вышеуказанным выводам, коэффициент усиления сразу повышается до 200. Коэффициент усиления можно просто настроить, подключив потенциометр последовательно с вышеупомянутым конденсатором через контакты 1 и 8.
Практическое применение схем усилителей с использованием микросхемы LM386
На следующем рисунке показана типичная схема усилителя ИС LM 386, имеющая минимальное количество компонентов, необходимых для работы с внутренне установленным уровнем усиления 20. Используемый динамик — 2 Вт, 8 Ом. На вход Vin может подаваться сигнал от любого источника звука, такого как разъем для наушников сотового телефона, разъем RCA L или R проигрывателя CD/DVD либо любой другой аналогичный источник.
Контакт Vs должен быть подключен к источнику +12V постоянного напряжения от адаптера AC/DC или самодельного трансформаторного/мостового блока питания. Контакт № 4 должен быть подключен к земле или отрицательной клемме блока питания. Провод заземления или отрицательный провод от источника входного аудио сигнала, также должен быть подсоединен к вышеуказанному отрицательному полюсу блока питания.
Входной контакт №2 идет к потенциометру 10K, который становится регулятором громкости, один из его концевых выводов выбирается для приема входного сигнала, а другой конец подключается к земле, а центральный — к горячему концу ИС. Громкоговоритель подсоединен к разъему №8 через блокирующий конденсатор большой емкости, цепочка резистор/конденсатор, подключенный к контакту №5 и заземлению, включен для компенсации частоты и обеспечения большей стабильности схемы.
Следующая схема показывает конструкцию, аналогичную приведенной выше, за исключением того, что ее контакты 1 и 8 были подключены к конденсатору емкостью 10 мкФ, который, как объяснялось выше, помогает довести коэффициент усиления усилителя до 200.
Подробная электрическая схема LM 386 с инструкциями
Схемы приложений
Из приведенного выше обсуждения мы узнали, что LM386 — это универсальная ИС небольшого усилителя звука, которую можно быстро и с большой эффективностью применять во многих различных небольших схемах, связанных со звуком. Ниже приведены несколько схем приложений с использованием микросхемы LM 386, которые вы можете самостоятельно собрать и получать много удовольствия от прослушивания.
Схема усилителя микрофона собранного на микросхеме LM386
На следующем изображении показано, как описанный выше чип LM 386 может быть применен для создания простой, но мощной схемы микрофонного усилителя, как показано ниже.
Усилитель LM 386 с усилением низких частот
Пока мы знаем, что, подключив электролит емкостью 10 мкФ к контактам 1 и 8, можно увеличить фактическое усиление схемы до 200. Это происходит из-за того, что конденсатор соответствующим образом закорачивает встроенный в ИС резистор 1,35 кОм. На рисунке выше показан способ шунтирования этого резистора с помощью C4-R2, чтобы обеспечить усиление низких частот на 6 дБ при 85 Гц. Это компенсирует реальную неспособность микросхемы воспроизводить подходящий басовый эффект через обычно используемые недорогие 8-омные динамики.
Схема радио AM
На рисунке выше показано, как конструкция усилителя LM 386 может быть настроена как компактный усилитель для создания простого AM-радио. Здесь обнаруженная AM-передача подается на неинвертирующий вход ИС через потенциометр R3 регулировки громкости, и результирующая RF отключается через R1, C3.
Любые оставшиеся RF помехи не могут попасть в громкоговоритель через указанный ферритовый фильтр. В этой конструкции радиоприемника LM 386 AM коэффициент усиления напряжения микросхемы установлен на уровне 200 — C4. Вы также можете видеть, что схема питается через дополнительный блок питания стадии подавления пульсаций путем настройки C5 между выводом 7 и отрицательной линией.
Источник
Простой усилитель для стереонаушников на LM386. Схема
Данный усилитель для стереонаушников — это всего лишь небольшой стереоусилитель мощности. Он обеспечивает мощность, достаточную для работы с парой стандартных наушников с импедансом примерно 32 Ом. Устройство оснащено стерео потенциометром для регулировки громкости.
Изначально устройство было разработано для встраивания в самодельный аудиомикшер для добавления возможности прослушивания через наушники. Схема очень маленькая и легкая, поэтому ее можно установить внутри аудиомикшера, используя фиксацию только за счет потенциометра громкости.
Описание схемы
Схема усилителя для наушников состоит из двух каналов и небольшого количества компонентов. Каждый из каналов собран на отдельном низковольтном усилителе мощности LM386 (U1 – левый и U2 — правый). LM386 — это усилитель мощности, предназначенный для использования в низковольтных бытовых устройствах.
LM386 может обеспечить до 325 мВт при нагрузке 8 Ом. Стандартные наушники обычно имеют большее сопротивление, поэтому мощность будет немного ниже.
Поскольку компоненты, используемые в обоих аудио каналах, идентичны, достаточно описания только одного канала.
Входной сигнал для левого канала подается на вывод 3 усилителя U1. Контакт 3 — это неинвертирующий вход усилителя. Внутреннее усиление LM386 установлено на уровне 20 (26 дБ), чтобы уменьшить количество внешних компонентов. Поскольку коэффициент усиления очень высокий, входной линейный сигнал необходимо ослабить с помощью потенциометра.
Входящий аудиосигнал проходит через конденсатор C2, потенциометр R1 и регулятор громкости R2 (логарифмический потенциометр). Когда потенциометры R1 и R2 выставлены на максимальное сопротивление (1 МОм и 10 кОм соответственно), то входной сигнал уменьшается примерно в 100 раз.
Для любого уровня входного сигнала потенциометр R1 должен быть отрегулирован так, чтобы при максимальной громкости (R2) было минимальное искажение в сочетании с достаточной громкостью. Потенциометр R4 правого канала должен быть отрегулирован так, чтобы был баланс громкости между левым и правым каналами.
Источник
LM386, KA386, КР1438УН2 – «чемпион» среди аудиоусилителей
Разговор пойдёт об очень распространённой интегральной схеме (ИС) звукового усилителя мощности LM386, производимой компанией National Semiconductor (сейчас полностью входит в состав Texas Instruments) [1] .
Действительно, напряжение питания микросхемы может быть в пределах 4…12 В, а потребляемый ток покоя составляет всего 4 мА, что является идеальным для большинства аудиопроектов, получающих питание от батарей. Усилитель развивает выходную мощность 0,5 Вт при напряжении питания 9 В и сопротивлении нагрузки 8 Ом. Если добавить, что Кус. этой интегральной МС может быть легко выбран от 20 до 200 с помощью двух внешних элементов, а её выходное напряжение автоматически устанавливается равным половине напряжения питания, то станет ясно, почему в течение многих лет эта микросхема сохраняет популярность.
Заголовок проекта отражает сказанное – как микросхема, так и наборы на её основе чрезвычайно востребованы радиолюбителями, в этом смысле аудиоусилитель LM386 действительно чемпион. См., например,
Предлагаю ознакомиться с возможностями массовой микросхемы LM386 и предложить мои варианты её применения.
Содержание / Contents
↑ Характеристики, функциональная схема и выбор внешних элементов усилителей на ИС LM386
Усилитель мощности звуковой частоты LM386 применяется в портативной радиоэлектронной аппаратуре.
Аналогом LM386 является KA386 фирмы Samsung, отечественный аналог – КР1438УН2. У российских любителей интегральная схема LM386 стала популярна с падением «железного занавеса», до этого времени тогда ещё советские электронщики облюбовали в качестве массового усилителя микросхему К157УД1, предназначенную для применения в аппаратуре магнитной записи.
На рис. 1 изображена функциональная схема LM386. На ней транзисторы структуры p-n-p VT1, VT2 и VT5, VT6 образуют дифференциальный усилитель, в котором каждый из входов соединён с общим проводом через резисторы R1 и R2, собственно и определяющие типовое входное сопротивление 50 кОм.
Нагрузкой дифференциального усилителя является токовое зеркало на транзисторах VT3, VT4, а выход (транзистор VT5) соединён с входом усилителя напряжения VT7, включённого по схеме с общим эмиттером. В цепь коллектора VT7 последовательно включены диоды VD1, VD2, служащие для создания смещения на базах выходного каскада, и источник тока Io.
Усилитель мощности работает в классе АВ и выполнен на транзисторах VT8 – VT10, включённых по схеме с общим коллектором, поэтому коэффициент усиления выходного каскада по напряжению близок к единице.
Обратите внимание, что для минимизации падения напряжения на транзисторах выходного каскада и получения максимальной выходной мощности в схеме не предусмотрены элементы защиты от перегрузок.
Резисторы R2 и R3 задают ток транзисторов дифференциального усилителя. Точка соединения резисторов R2 и R3 выведена на внешний вывод микросхемы (вывод 7), предназначенный для подключения внешнего фильтрующего конденсатора.
Эмиттеры транзисторов дифференциального каскада VT2 и VT5 включены несколько нестандартно: не соединены вместе, а содержат резисторы отрицательной обратной связи. Два из них — R4 и R5 последовательно включены между эмиттерами VT2 и VT5, а третий — R6, подключён к эмиттеру VT5 и выходу выходного каскада (эмиттеры VT8, VT9).
Коэффициент усиления по напряжению при таком включении равен удвоенному отношению сопротивления R6 к сумме сопротивлений резисторов, установленных между эмиттерами транзисторов VT2 и VT5 (R4 + R5):
Вывод эмиттера VT5 и точка соединения резисторов R4, R5 выведены на внешние выводы микросхемы (выводы 1 и 8 соответственно) и предназначены для установки требуемого коэффициента усиления, который может варьироваться в диапазоне от 20 до 200. Если закоротить выводы 1 и 8 по переменному току с помощью внешнего конденсатора, то в выражении (1) сопротивление внутреннего резистора R5 принимаем равным нулю, и полное усиление по напряжению составит 200.
Включив между выводами 1 и 8 последовательную цепочку, состоящую из резистора и конденсатора, можем варьировать коэффициент усиления от 20 до 200:
где Rвн – сопротивление внешнего резистора, кОм.
Ёмкость внешнего конденсатора Свн должна быть выбрана такой, чтобы в рабочем диапазоне частот его сопротивление переменному току было много меньше, чем Rвн. При Rвн=0 получаем Ku=200; при Rвн=∞ получаем Ku=20, а при Rвн=680 Ом коэффициент усиления Ku=50.
Для получения требуемой амплитудно-частотной характеристики (АЧХ) можно включать комплексные элементы как между выводами 1 и 8, так и между выводами 1 и 5 микросхемы.
Элементы формирования требуемой АЧХ можно включать не только между указанными выводами, но и общим проводом [2]. Например, можно установить между выводом 1 и общим проводом цепочку, состоящую из оксидного конденсатора и внешнего резистора Rвн.
Интересно, что в этом случае удаётся получить коэффициент усиления порядка 70 дБ. При Rвн=4,7 Ом получаем Ku=70 дБ; при Rвн=15 Ом имеем Ku=60 дБ, а при Rвн=47 Ом коэффициент усиления составит Ku=50 дБ.
Такие схемы могут найти применение в высокочувствительных устройствах (приёмники прямого преобразования, сверхчувствительные микрофоны [3 — 5] и др.), при этом удаётся обойтись без дополнительного усилительного каскада на транзисторе, включаемого перед усилителем на микросхеме LM386.
↑ Усилительные схемы на ИС LM386
↑ Усилитель с коэффициентом усиления 200
Резистор R1 служит регулятором громкости, конденсатор C1 является фильтрующим. Конденсатор C2 шунтирует выводы 1 и 8 микросхемы DA1 по переменному току, благодаря чему достигается максимальный коэффициент усиления; конденсатор C4 служит для развязки по питанию, что важно в условиях работы с разряженной батареей, когда её внутреннее сопротивление увеличивается.
Цепочка C3, R2 предназначена для повышения стабильности при работе усилителя на ёмкостную нагрузку. Иногда её установкой пренебрегают, что не является преступлением, но нежелательно, поскольку может преподнести «сюрприз» в самый неподходящий момент. Нагрузка ВА1 подключена к выходу ИС через разделительный конденсатор С5.
↑ Усилитель с минимальным количеством внешних элементов и коэффициентом усиления 20
↑ Усилитель с коэффициентом усиления 50
По сравнению с предыдущей схемой добавлено три элемента: два конденсатора и резистор. В табл. 2 приведены значения резистора R2 для получения других коэффициентов усиления по напряжению.
↑ Усилитель с подъёмом низких частот
Примером усилителя, в котором производится формирование требуемой частотной характеристики, является схема, показанная на рис. 5.
Здесь усиление по напряжению изменено шунтированием внутреннего резистора обратной связи (R6), доступного через выводы 1 и 5 микросхемы LM386. Шунтирование цепочкой R2, C2 позволяет получить подъем частотной характеристики около 6 дБ на частоте 85 Гц, что может быть использовано для улучшения звучания малогабаритных акустических систем.
Коэффициент усиления по напряжению усилителя на частоте 1 кГц составляет Ku=10 (20 дБ).
↑ Принципиальная схема усилителя для АМ радиоприёмника
Сигнал со среднего вывода R1 поступает на неинвертирующий вход микросхемы DA1 через развязывающую цепочку – фильтр нижних частот R2, C2, устраняющий попадание остатков высокочастотного напряжения. Для этих же целей на выходе усилителя включена цепочка L1, C7. Дело в том, что усилитель на микросхеме DA1 довольно широкополосный (полоса пропускания составляет около 300 кГц) и без принятия подобных мер служит отличным источником радиоизлучений в длинноволновом и средневолновом диапазонах волн.
Резистор R3, включённый параллельно катушке L1, служит для устранения нежелательных резонансов в звуковом диапазоне частот. Коэффициент усиления по напряжению усилителя максимален (Ku=200).
Наряду с оксидным конденсатором С6 включён керамический конденсатор С5, используемый для высокочастотной развязки по цепи источника питания; не забыт в этой схеме и фильтрующий конденсатор, подключаемый к выводу 7 микросхемы (С3).
Катушка L1 представляет собой ферритовую бусинку с пропущенным проводом внутри (Ferrite Bead).
↑ Другие варианты применения микросхемы LM386
↑ Усилитель на LM386 с гнездом для подключения наушников
Второй конденсатор (С2), включённый между средним выводом R1 и неинвертирующим входом, в принципе не нужен, но такое схемотехническое решение устраняет шорохи при возможном плохом качестве переменного резистора, а также уменьшает смещение половинного напряжения на выходе усилителя.
Гнездо для подключения наушников включено через развязывающий конденсатор С5 таким образом, что при отсутствии штекера наушников подключён динамик ВА1, а при включении штекера – динамик отключается.
Назначение остальных элементов усилителя было рассмотрено выше. Коэффициент усиления по напряжению минимален (Ku=20).
↑ Переговорное устройство на LM386
Устройство позволяет организовать проводную связь между двумя абонентами. Дальность связи достигает нескольких сотен метров.
Область применения этой конструкции: связь между двумя абонентами, игры и т. п. Усилитель с динамической головкой ВА1 располагается на основном пункте связи, а другая динамическая головка – на удалённом пункте связи. Соединение основного и удалённого пунктов связи выполняют многожильным телефонным двухпроводным кабелем. Конструкция питается от батареи напряжением 9 В типа «Крона».
↑ Генератор синусоидальных сигналов с малыми искажениями на LM386
Чаще всего выбирают R1=R2 и C1=C2, при этом выражение упрощается:
Вторым требованием является то, что коэффициент отрицательной обратной связи усилителя должен быть равен точно 1/3 [6]. При указанных условиях в схеме возникают незатухающие колебания. Если этот коэффициент меньше 1/3, амплитуда колебаний будет быстро увеличиваться со временем, пока выходное напряжение не превратится в меандр.
Если коэффициент отрицательной обратной связи более 1/3, амплитуда колебаний через некоторое время будет стремиться к нулю. Ясно, что установить идеальное значение коэффициента можно, если применить систему автоматической регулировки амплитуды.
Для этого предусмотрена цепь отрицательной обратной связи R3, HL1, которая так воздействует на коэффициент усиления, чтобы амплитуда колебаний стабилизировалась при весьма малых нелинейных искажениях (порядка 0,05%).
Если выходное напряжение генератора по каким-либо причинам увеличивается, увеличится и ток через R3, а также напряжение на нелинейном элементе – лампе накаливания HL1. Нить лампы накаливания разогреется, и её сопротивление увеличится, что приведёт к уменьшению глубины отрицательной обратной связи и уменьшению напряжения на выходе генератора. При уменьшении выходного напряжения генератора процессы происходят в обратном направлении, в результате обеспечивается автоматическая стабилизация коэффициента усиления.
При указанных на принципиальной схеме значениях элементов частота генерируемых колебаний составляет 1 кГц, а амплитуда – около 2 В эфф.
↑ Генератор прямоугольных импульсов на LM386
Усилитель DA1 играет роль компаратора. Положительная обратная связь реализуется с помощью делителя R1, R2, подключённого к неинвертирующему входу усилителя. Коэффициент обратной связи Kос=R2/(R1+R2). В состав отрицательной обратной связи включена интегрирующая цепь R3, C1.
Период колебаний генератора для симметричных сигналов прямоугольной формы составляет:
При Кос=0,462 формула упрощается:
Максимальная частота генерируемых схемой колебаний ограничена скоростью нарастания выходного напряжения усилителя DA1.
↑ Универсальный усилитель на ИС LM386
↑ Детали универсального усилителя и монтажная плата
Применены резисторы типа МЛТ, МОН, С2-33Н мощностью 0,25 или 0,125 Вт. Конденсаторы керамические КМ-5, КМ-6, К10-17, К10-47, а также плёночные К73-9, К73-17 или К73-24; оксидные конденсаторы К50-35. Динамическая головка – широкополосная, с сопротивлением 8 Ом, мощностью 0,5…3 Вт, например 1ГДШ-6-8. Все детали могут быть заменены импортными аналогами.
Для экспериментов с усилителем подходит лабораторный источник питания на основе аккумуляторной батареи [8].
Микросхема LM386 позволяет собрать множество надёжных конструкций, в которых нужна небольшая выходная мощность.
В настоящее время появились достойные преемники LM386, содержащие минимум навесных элементов. К ним можно отнести LA4525, LA4534 фирмы SANYO, выпускаемые в корпусе DIP8 или MFP105 под поверхностный монтаж; AP4890, TDA7050, TDA7052, KA2209, КР174УН31 и др. [9 — 11].
↑ Файлы
Плата и схема универсального УМЗЧ на LM386 здесь:
🎁lm386-the-champion-among-amplifiers.zip 29.92 Kb ⇣ 83
↑ Список источников
1. LM386 — Low Voltage Audio Power Amplifier .
2. Дайджест КВ+УКВ // Радиоаматор, 2009, №2, с. 56 (Как получить усиление 74 дБ от микросхемы LM386).
3. Мосягин В. Узконаправленный микрофон // Радио, 2002, №5, с. 54, 55.
4. Merryfield T. Super-Ear Audio Telescope // Everyday Practical Electronics, 2005, №6, p. 388 – 392.
5. Stewart J. The Big Ear // Nuts & Volts, 2008, №10, p. 34 – 39.
6. Фолкенберри Л. Применения операционных усилителей и линейных ИС. – М.: Мир, 1985. 572 с. (с. 250 — 254).
7. Дайджест (Тест микрофонного эффекта конденсаторов) // Радиохобби, 2000, №5, с. 25.
8. Большая статья о маленьком усилителе на микросхеме TDA2822M. Датагорская статья.
9. Справочник. Микросхема УМЗЧ LA4525. Микросхема УМЗЧ LA4534M // Радиоконструктор, 2008, №9, с. 20 — 22.
10. Мосягин В.В. Юному радиолюбителю для прочтения с паяльником. (Серия «СОЛОН – радиолюбителям», выпуск 17). – М.: СОЛОН – Пресс, 2003. – 208 с. 11. Мосягин В.В. Секреты радиолюбительского мастерства. (Серия «СОЛОН – радиолюбителям) – М.: СОЛОН – Пресс, 2005. – 216 с.
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.
Источник